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Lagrangian coordinates for walls 



Equations of motion 
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Often for these problems, the results below are quoted as empirical facts at the 
boundary of the vessel wall, r=R. 
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PoissonÕs ratio deal with non-homogeneity 
of vessel wall material  

YoungÕs modulus is measure of stiffness 
(Read FeynmanÕs lectures for more about elasticity) 



LetÕs re-list our equations now along 
with boundary conditions 
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Equations for fluid 
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Equations for vessel walls 
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LetÕs re-list our equations now along 
with boundary conditions 
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LetÕs re-list our equations now along 
with boundary conditions 
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vr (R) =
d" r (R)

dt

Boundary conditionsÑvelocities must match at vessel wall 
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LetÕs re-list our equations now along 
with boundary conditions 

Boundary conditionsÑat vessel wall r=R, vessel-fluid boundary 
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LetÕs re-list our equations now along 
with boundary conditions 

Boundary conditionsÑat outer vessel wall r=R+h, vessel-tissue boundary 
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LetÕs re-list our equations now along 
with boundary conditions 

And donÕt forget out equation for the pressure 
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" 2p = 0 (13) 



Thin-wall approximation: h<<R allows us to ignore higher-order terms in the 
Taylor expansion 
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We can Taylor expand equations 
around R at outer vessel wall  



Start with our equation for vessel 
walls based on analogy with Navier-Stokes 
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By Eqn 11a 
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Differentiating Eqn. 6 with respect to r, we find 
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Thus, we can simplify our equation of motion to be 
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Differentiating Eqn. 12a with respect to z, we find 
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By equation of continuity, Eqn (6), we know 
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Substituting this into the equation of motion gives 



Finally, our equation of motion with this substitution and evaluated at r=R  
becomes 
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extra factor of 2 can loosely interpret 
as PoissonÕs ratio 

Now, we have a sense for how to use these equations together and what sorts 
of tricks are necessary, and we have an idea of the origin of the equations of 
motion for the elastic wall evaluated at the fluid/vessel wall boundary. Our real 
equations 3 and 4 are 
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Using these we can get an idea of the 
source of the equation at the fluid-vessel 

boundary 

(3a) 

(4a) 

Must now Fourier transform our equations to match up with our previous 
results for p, vr, and vz 



Fourier transform to combine with previous 
results to get 4 equations and 4 unknowns 



Fourier transforming equations of 
motion for elastic walls 
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Equations of motion for wall become 
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Boundary conditions (Eqs. 7 and 8) 
give 
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Calculate volume flow rate and impedance, so that we 
can understand oxygen delivery to tissue and energy 

loss in pumping blood from heart to capillaries 



Volume flow rate 
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Volume flow rate 
Integrating the Bessel functions yields 
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Now, take the approximation of massless walls (" w=#=0). This is a common 
approximation. It is possible to do better by assuming small perturbative mass,  
and you get the same results. From Eqn. 3a 

!  

hE
R2

÷ "  r (k) = ÷ p (k)J0(ikr)



Volume flow rate 
Substituting the last relation into Eq. 7a, we show 

We can substitute this into our expression for volume flow rate to find 
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Completion of Basic fluid mechanics: 
What did we learn? 

1.! How to calculate volume flow rate (essential for delivery of oxygen and nutrients),  
impedance (characterizes dissipation and reflection), and energy lost in pumping blood 
from the heart to the capillaries 
 
2. Understand laminar Newtonian flow for incompressible fluid in rigid pipeÑreasonable 
approximation for small vessels 
 
3.Understand pulsatile flow through elastic tubes driven by oscillatory pressure  
gradientÑreasonable approximation for large vessel and arteries with blood flow 
driven by heart (i.e., a pump) 
 
4. Methods are useful for all kinds of applications, including car and airplane design,  
water flow and delivery, and any kind of fluid flow and delivery in biological or biomedical 
systems. For example, neural systems. 
 
5. Understand approximations that go into these results and calculations and have an 
idea of how to change them for new applications and problems. 
 



Tour de force of applied mathematics: 
What mathematical methods did we learn? 

1. Working with several coupled partial differential equations 
 
2. Separation of variables 
 
3.Fourier transform 
 
4. Bessel functions 
 
5. Dirac delta function 
 
6. Asymptotic expansions and Taylor series 
 
7. Complex analysis 
 
8. Wave-like equations and wave functions 
 
9. Diffusion-type equations 
 
10. Navier-Stokes equations 
 
 


