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Abstract
The HamiltonianH = p2+x4+iAx, whereA is a real parameter, is investigated.
The spectrum of H is discrete and entirely real and positive for |A| < 3.169.
As |A| increases past this point, adjacent pairs of energy levels coalesce and
then become complex, starting with the lowest-lying energy levels. For large
energies, the values ofA at which this merging occurs scale as the three-quarters
power of the energy. That is, as |A| → ∞ and E → ∞, at the points of
coalescence the ratio a = |A|E−3/4 approaches a constant whose numerical
value is acrit = 1.1838363072914 · · ·. Conventional WKB theory determines
the high-lying energy levels but cannot be used to calculate acrit . This critical
value is predicted exactly by complex WKB theory.

PACS numbers: 0230M, 1110K, 1110L, 1130E

In this Letter we examine the Hamiltonian

H = p2 + x4 + iAx, (1)

where A is a real parameter. This Hamiltonian is an additive complex deformation of the
conventional Hermitian HamiltonianH = p2 +x4, which represents the pure quartic oscillator.
This Hamiltonian is a special case of a slightly more general Hamiltonian previously examined
by Delabaere and Pham [1]5.

This Hamiltonian is of interest because, while the HamiltonianH is complex for allA �= 0,
its entire spectrum is discrete, real, and positive for |A| < 3.169 (see figure 1). The reality
of the spectrum is apparently due to the PT invariance of the Hamiltonian. However, not all

3 Web site: http://www.phy.bris.ac.uk/staff/berry mv.html
4 Permanent address: Gazi Universitesi, Fen Edebiyat Fakultesi, Fizik Bolumu, 06500 Teknikokullar-Ankara, Turkey.
5 Very recently, an oscillator problem like that in (1) except with x4 replaced by x3 was studied by Delabaere and
Trinh [2].
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Figure 1. First ten energy levels of the Hamiltonian H = p2 + x4 + iAx as a function of the
real parameter A as represented by dots. All of the energy levels are real for |A| < 3.169. As
|A| increases past this value, the two lowest eigenvalues become degenerate and move off into the
complex plane. If A were pure imaginary there would be no such degeneracy because a Hermitian
perturbation causes energy levels to repel. When |A| passes the value 7.625, the next two energy
levels coalesce and then become complex. This pairing-off process continues as |A| increases; the
subsequent values of |A| at which pairs of energy levels are degenerate are 12.110, 16.609, 21.109,
and so on (see table 1). The continuous curves represent the energy levels given by the WKB
quantization formula (13).

PT -symmetric Hamiltonians have entirely real spectra. Indeed, figure 1 shows that as |A|
increases past the points 3.169, 7.625, 12.110, 16.609, 21.109, · · ·, pairs of adjacent energy
levels merge and become complex, starting with the lowest two eigenvalues. Note that for
any finite value of A there are always a finite number of complex eigenvalues and an infinite
number of real eigenvalues6.

This pairwise coalescence of eigenvalues exhibits scaling behaviour: The values of A
at which adjacent energy levels become degenerate grow as the three-quarters power of the
energy. That is, as |A| → ∞ andE → ∞, at the points of coalescence the ratio a = |A|E−3/4

approaches a constant whose numerical value is acrit = 1.1838363072914 · · ·. The purpose of
this paper is to use the methods of complex WKB theory [3] to calculate acrit .

Many examples of complex PT -symmetric Hamiltonians have been studied recently.
These remarkable Hamiltonians, whose spectra are often entirely real and positive, are all
complex deformations of conventional Hermitian Hamiltonians. However, in most cases the
deformations are multiplicative rather than additive as in (1). For example, the non-Hermitian
Hamiltonian

HN = p2 − (ix)N (2)

is a complex multiplicative deformation of H2 = p2 + x2, the Hermitian harmonic oscillator
Hamiltonian7. Although it has not yet been proved rigorously, it is believed that for N � 2

6 The Hamiltonian (1) is one member of a large class of Hamiltonians that arise from the study of PCT -symmetric
two-component Dirac equations.
7 Other examples of multiplicative deformations of Hermitian Hamiltonians are H = p2 + x2K(ix)ε , where
K = 1, 2, 3, · · · and ε � 0. All such Hamiltonians are PT symmetric and appear to have entirely real, positive
spectra [5].
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the entire spectrum of HN is discrete, real, and positive [4, 5]. A transition occurs at N = 2.
When 1 < N < 2, a finite number of eigenvalues (the lowest-lying eigenvalues) are real and
the remaining infinite number of eigenvalues are complex8.

Direct numerical evidence for the reality and positivity of the spectrum of HN (N � 2)
can be found by performing a Runge–Kutta integration of the complex Schrödinger equation
associated with HN [4]. Alternatively, the large-energy eigenvalues of the spectrum can be
calculated with great accuracy by using conventional WKB techniques [6]. To do so, we find
the turning points x±, which are the roots of E + (ix)N = 0 that analytically continue off the
real axis as N increases from 2:

x− = E
1
N e−iπ N+2

2N x+ = E
1
N e−iπ N−2

2N . (3)

These turning points lie in the lower-half complex-x plane when N > 2. The WKB phase-
integral quantization condition to leading order is(

n +
1

2

)
π =

∫ x+

x−
dx

√
E + (ix)N .

It is crucial that this integral follows a path along which the integral is real. WhenN = 2, this
path lies on the real axis and when N > 2, the path lies in the lower-half x plane. To evaluate
the integral we deform the contour of integration so that it follows the rays from x− to 0 and
from 0 to x+, yielding(

n +
1

2

)
π = 2 sin

( π
N

)
E

2+N
2N

∫ 1

0
ds

√
1 − sN .

We then solve for En:

En ∼
[
�

(
2+3N

2N

) √
π

(
n + 1

2

)
sin

(
π

2N

)
�

(
1+N
2N

)
] 2N

2+N

(n → ∞). (4)

These energies are all real and positive.
Additional evidence for the reality and positivity of the spectrum can be obtained by

calculating the spectral zeta function ZN (the sum the inverses of the eigenvalues) of the
Hamiltonian HN . This was done for the case N = 3 by Mezincescu [7] and for the case of
arbitrary N > 2 by Bender and Wang [8]. The exact result for arbitrary N > 2 is

ZN = 4 sin2( π
N+2

)
�

(
1

N+2

)
�

(
2

N+2

)
�

(
N−2
N+2

)
(N + 2)

2N
N+2�

(
N−1
N+2

)
�

(
N
N+2

) . (5)

Using the numerical values for the first few eigenvalues and the WKB formula (4) for the high
eigenvalues, one can conclude that any complex eigenvalues must be larger in magnitude than
about 1018.

Rigorous results regarding the reality of the eigenvalues of HN have been obtained by
Shin [9], who showed that the entire spectrum of HN must lie in a narrow wedge containing
the positive-real axis. Other results have been obtained by Delabaere et al (see [2, 10]).

Let us now return to the HamiltonianH in (1). The Schrödinger equation associated with
H is

−ψ ′′(x) + (x4 + iAx)ψ(x) = Eψ(x). (6)

8 The transition at N = 2 can be seen at the classical level. When N � 2 the classical trajectories x(t) are periodic
closed orbits in the complex-x plane. However, when 1 < N < 2, the classical motion is no longer periodic; the
trajectories x(t) spiral outward to infinity (see [5]). For the case of the Hamiltonian H in (1), where there are only
a finite number of complex eigenvalues for all A, one observes no transition at the classical level at |A| = 3.169.
Indeed, the classical trajectories continue to be closed periodic orbits for all values of A.
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Table 1. Values of A at which the energies of figure 1 become degenerate, approximations
AWKB from equations(13), percentage error, and scaled parameters a = AE−3/4. The values
of a extrapolate to acrit = 1.1838363072914 · · ·.

A AWKB
A− AWKB

AWKB
a

3.169 3.097 2.32% 1.3330
7.625 7.596 0.38% 1.2355
12.110 12.097 0.11% 1.2150
16.609 16.597 0.07% 1.2063
21.109 21.098 0.05% 1.2001

It is relatively straightforward to show that some eigenvalues E must become degenerate for
sufficiently large values of |A|. The argument is similar to one due to Simon [11]. Treating
g = iA as a perturbation parameter, we argue thatE(g) is a Herglotz function of g. (A Herglotz
function is one whose imaginary part has the same sign as the imaginary part of its argument;
the function is real when its argument is real.) The Herglotz property of E(g) is verified by
multiplying (6) by ψ∗(x), integrating with respect to x, and taking the imaginary part of the
resulting equation. Next, we apply the theorem that if a function is both entire and Herglotz,
then it is linear. It is easy to verify by calculating to second order in perturbation theory that
E(g) is not a linear function of g so we conclude that E(g) has singularities, and these are
the square-root singularities (degeneracies) that are shown in figure 1 and that occur for pure
imaginary values of g9.

Letting x = E1/4t gives the scaled version of (6):

−ε2ψ ′′(t) + (t4 + iat)ψ(t) = ψ(t) (7)

where a = AE−3/4 and ε = E−3/4. The parameter ε is small for large energies E. In table 1
we display the scaled values of the degeneracy points.

We can use conventional WKB techniques like those used to derive (4) to calculate the
large eigenvalues E of (6). However, these techniques are not powerful enough to predict the
degeneracies shown in figure 1. Instead, we use complex WKB methods [3], which take into
account reflections off all turning points and not just the principal turning points.

The complex WKB method incorporates the subdominant exponentials that can appear
and disappear across Stokes lines issuing from turning points in the complex-x plane. In the
present case there are four turning points xi(E,A) (illustrated in figure 2 for E = A = 1),
defined by

E − x4
i − iAxi = 0. (8)

The turning points x1 and x2 lie just below the real axis, and are the continuations for A > 0
of the two real turning points generating the simplest WKB approximation for the pure quartic
oscillator; x3 and x4, which lie on the imaginary axis, are the complex turning points that are
responsible for the degeneracies. The Stokes lines from xi (see figure 2) are defined by

Rew(xi, x;E,A) = 0 (9)

where

w(xi, x;E,A) =
∫ x

xi

dt
√
E − t4 − iAt. (10)

9 This argument fails for the Hamiltonian p2 + x2 + iAx. Indeed, for this shifted quadratic potential the eigenvalues
En = 2n + 1 + 1

4A
2 are entire functions of A for all n. For this special case, the integral

∫
dx xψ∗(x)ψ(x) vanishes.
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Figure 2. Complex-coordinate plane structure of Hamiltonian (1) for E = 1 and A = 1 as
required for complex-WKB quantization. The four dots represent the turning points xi , which
obey the equation 1 −x4 − ix = 0. The solid curves represent the Stokes lines where subdominant
exponentials appear. The dashed line is the connection path. The zigzag lines are branch cuts.

Beginning with a solution of (6) that decays exponentially towards x = −∞, we continue
along the path shown in figure 2 (with branch cuts avoiding the path, as indicated), incorporating
the exponentials that appear as each Stokes line is crossed (with coefficient −i times that of the
dominant exponential), and referring each exponent to the appropriate turning point. When
the positive real-x axis is reached, we require the solution that decays towards x = ∞, so the
coefficient of the growing exponential must be 0. This leads to the quantization condition

exp[−iw(x1, x2)] = 2 cos[w(x3, x2)] cos[w(x1, x3)]. (11)

(We temporarily suppress the dependence on E and A.) From the PT invariance of (1) and
incorporating the effect of the branch cut between x2 and x3, we have

w(x1, x3) = −w(x3, x2)
∗ ≡ U + iV so that w(x1, x2) = 2iV. (12)

Thus (12) becomes, after a little simplification,

cos(2U) = − 1
2 exp(−2V ). (13)

This is the final form of the complex WKB quantization condition. Since U and V are
functions of E and A, the solutions of (13) are eigenvalue curves in the (E,A) plane shown in
figure 1. It is clear that all features of the exact energies, including the degeneracies (see table
1), are reproduced accurately, even for the low-lying states. For small A, V is positive, and
exp(−2V ) gives an exponentially small correction to the conventional WKB eigenvalues given
by cos(2U) = 0. (These eigenvalues arise from the turning points x1 and x2 because 2U is the
action integralw(x1, x2) when there is no branch cut joining x2 and x3.) WhenA increases, V
becomes negative, and exp(−2V ) is a positive exponential whose value can exceed 2. When
this happens (13) has no solutions for which U or E is real. In effect, the disappearance of
real eigenvalues (i.e. the occurrence of degeneracies) is a phenomenon where complex turning
points dominate, rather than giving the familiar small corrections.

There is no simple exact formula for the parameter values AWKB corresponding to the
degeneracies given by (13). If U is regarded as energy and V as the parameter, then
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degeneracies occur at V = − 1
2 log 2 = −0.3466 · · ·. For high energies the degeneracies

lie asymptotically on the curve V (E,A) = 0. To evaluate the integral (cf. (10) and (12)) we
convert to scaled variables, expand the contour to enclose the branch point joining the turning
points, expand the integral in powers of a, and integrate term by term. This gives

(2π)3/2a +
∞∑
n=0

(−1)na4n

[
�

(
n + 1

4

)
�

(
3n− 3

4

)
(4n)!

− a2�
(
n + 3

4

)
�

(
3n + 3

4

)
(4n + 2)!

]
= 0 (14)

whose numerical solution is acrit = 1.1838363072914 · · ·. This exact theoretical result agrees
perfectly with the extrapolation from the numerically-determined eigenvalues.

MS is grateful to the Physics Department at Washington University for their hospitality during
his sabbatical. MB is supported by the Royal Society of London. This work was supported in
part by the US Department of Energy.
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